چکیده

به مانور ارژایی تأثیر سطوح تنش خشکی بر الگوی بیان زن گلوتامین سینتئاتز به همراه پروتئین و کلروفیل و شاخه سطح اکسیداسیون سلولی TBARM مطالعه ای روی گیاه کلزا (رم فاکون) در شرایط گلخانه تحقیقاتی انجام شد. سطح تیمارهای تنش خشکی شعله ملدیدرن عادی آبیاری برای حصول پتانسیل 5/1-0، 1-0-0 و 0-0 بود. همچنین آبیاری در حد نظریت زراعی (FC) به عنوان شاهد لاحظ گردید.

اعمال تیمارهای تنش از زمان انتقال گیاهان پس از بهاره سازی به گلخانه انجام شد. به منظور افزایش دقت از طرح آماری بلک های کامل تصادفی با 4 تکرار استفاده شد. نمونه برداری تصادفی از برج در مراحل مختلف رشد شعله ساقه دهه، غلاف بندی و رسیدگی فیزیولوژیک انجام شد. همچنین نمونه برداری از غلاف سبز و دانه در مراحل پایانی رشد صورت یافت. در مورد کلبه ی تیمارهای آزمایشی میزان بیان زن گلوتامین سینتئاتز، مقدار کلروفیل، پروتئین و نشان داد با افزایش شدت تنش خشکی و سن گیاه میزان پروتئین و کلروفیل عموما کاهش در اغلب مراحل رشد تفاوت معنی داری بین میزان پروتئین برای تیمارهای شاهد. 5/0 و 1-0 بار ملاحظه نشد. میزان شاخه اکسیداتهایی TBARM شاخه سطح اکسیداسیون سلولی TBARM میدان تیمارهای افزایش یافته. نشان داد که کاهش میزان سینتئاتز در برج تحت تأثیر تنش خشکی تا مرز تیمار 1-0-0 افزایش و پس از آن عموما کاهش داشت. میزان بیان این زن در غلاف و دانه در شرایط تیماری مورد مطالعه یک متر از برج بود.

واژه‌های کلیدی: کلزا، تنش خشکی، پروتئین، کلروفیل، زن گلوتامین سینتئاتز

مقدمه

کلزا از مهم‌ترین دانه‌های روغنی شناخته شده در باشکوه حداکثر ۱۷ دوست از تولید روغن نباتی را تامین می‌نماید. روغن کلزا در مقایسه با سابقه روغن‌های ممتاز نظر آفت‌بردگان، ذرت و سویا به دلیل وجود
بزرگی خشکی در گیاه زمانی حادثهی شود که سرعت ترویج بیش از جذب آب باشد. به عبارت دیگر افزایش ترویج با کافی وجود جذب آب منجر به تظاهر تنش می‌گردد. در تحقیقات آزمایشگاهی از حالات آماس طبیعی خارج می‌شود. با تداوم تنش، پتانسیل آب در گیاه کاهش پیشتری یافته و به دنبال آن کاهش فتوسنتز و اختلال در فرآیندهای فیزیولوژیکی و در نهایت مرگ سلولی حاصل می‌شود (15). گیاهان زراعی از نظر طرفیت جذب آب، تغذیه و واکنش نسبی تنش خشکی عكس عمل متفاوتی دارند. این روند اخلاقی زمانی که گیاه تحت شرایط تنش خشکی قرار می‌گیرد بیشتر بروز می‌کند. فرآیندهای فیزیولوژیک در گیاهان عمداً تابع ویژه‌ای از گیاه رفتار و تنها به طور غیرمستقیم تحت تأثیر تنش آب در خاک و هوا قرار می‌گیرند (2).
پذیرفته، آبیاری کامل در حد ظرفیت زراعی (معدل 6/8 لیتری) به عنوان شاهد انجام شد.
طرح آماری و نمونه برداری به منظور افزایش دقت از طرح آماری بلک کامل تصادفی با 2 تکرار استفاده شد.
نمونه برداری جهت محاسبه شاخص بیوشیمیایی TBARM و میزان کلروفیل به صورت ماهانه و تکرار آماده شد (13) همچنین نمونه برداری تصادفی و تکرار دار جهت انجام مطالعات مولکولی و بررسی بیان زن گلوبین مسینتاز نیز به طور همزمان انجام شد.

اندازه‌گیری کلروفیل
پرای انداره گیاه میزان کلروفیل از روشن بورا (14) استفاده گردید. مقدار 5/0 گرم نمونه بزرگ (بصورت بیخ زده در 50 درجه میلی لیتر استون 80 درصد مخلوط شد. پس از سانتیوژ میزان جذب (A) در طول موج های 443/6467/6 نانومتر توسط اسپکتروفوتومتر UVikon watford ثبت گردید. میزان کلروفیل a و کلروفیل b و کل کلروفیل براساس فرمول های زیر محاسبه گردید (14):

\[
\text{chl}_{a} \ (\text{mgml}^{-1}) = 12.25A663.6-2.55A646.6 \\
\text{chl}_{b} \ (\text{mgml}^{-1}) = 20.31A646.6-4.91A663.6 \\
\text{chl} \ (\text{mgml}^{-1}) = 16.76A646.6-6.34A663.6 \\
\]

TBARM

اندازه‌گیری در این سنجش که معمولی برای اندازه‌گیری میزان نش سلولی ارزیابی است.

مواد و روش‌ها
بذرگاه گیاه کلزا، وارده فالکون در شرایط (Brassica napus cv. Faclon) کشت بسته سیک (کوارتز- ماسه- پرلیت و کوکوسیت به نسبت 2:3:0.3:0.2 در صد) کشت و در ماه چهارم گوجه به پله به همراه محصولات ۴ هفته در دمای ۱۶ درجه سانتی گراد قرار گرفت. پس از آن در شرایط گلخانه تحفیظی با میزان روشبایی ۱۶ ساعت و دمای ۲۲ درجه سانتی گراد در روز و ۱۶ درجه سانتی گراد در شب منتقل شد. در ابتدا در گلخانه بزرگی ۲۰ کیلوگرمی سه بوته و پس از استقرار کامل به یک بوته تنک شد.

عمل تشکیلی

1- Thiobarbituric Acid Reactive Material
ابتدا کلون کاوشگر گلوتامینستاتاز بوسیله
ستون سفارز خالص سازی شد. مرحله
مقدماتی پیش‌هیبرید با قرار دادن غشا
نایلونی حامل RNA در بابر 65
(7% SDS، 25OmM
درجه سانتی‌گراد به مدت یک شب
Sodium phosphate pH7.2)
در شیب ۶۵ درجه سانتی‌گراد انجام شد.
کاوشگر تک رشته‌ای فسفر رادیوئتیو
در محیط بافری با غشا حامل RNA
مجددا به مدت یک شب در شیب ۶۵ درجه
سانتی‌گراد قرار گرفت. غشا را با محلول
0.2×SSC/1%SDS
پس از خشک
در وزن‌گیری
درجه سانتی‌گراد به مدت ۲۴ ساعت تگه‌داری
کرده و سپس ظاهر گردید.
نتایج و بحث
رونده تغییرات میزان پروتئین برگ طی
مراحل نیو تحت تأثیر تنش خشکی در گلود
1 آوروده شده است. همچنین میزان پروتئین
غلاف‌بیز در مرحله ۱ خلاف بندی و دانه در
مرحله ۱ رسیدگی نیز اندیشگه گیری شد
(جدول ۱). بیشترین مقدار پروتئین برگ در
مرحله گلدهی در تیمار شاهد و کنترل این
در تیمار ۴- بار در مرحله ۲ رسیدگی حاصل
شد. در اغلب موارد تفاوت معنی‌داری دریای
میزان پروتئین در تیمار شاهد و تیمارهای
و بیشتر بار حاصل نگرفت. از طرفی روند
کاهش میزان پروتئین با افزایش شدت تنش
در مراحل سابقه‌های و گلدهی نسبت به سایر
مراحل رشد محصولات تری تود. چنین به نظر
مقدار مالون دی آلدزه که محصول به با
نسبت به پایدار و مناسب استفاده می‌گردد
برگ (چری‌ها) است اندیشگه گیری می‌گردد.
در این خصوص از روی هگه و همکاران (۵)
با تغییراتی به شرح زیر استفاده گردید. مقدار
۱/۵ مول ماده برگ را هموزنی در نموده و یک
میلی لیتر اسید تری کلرواستیک (w/v)
به آن اضافه شد. محلول حامض را با افزودن
۱۰ میلی لیتر اسید شده به شدت مخلوط نموده
(ورتمس) و با دو دفعه در دقیقه به مدت
۱۵ دقیقه سانتی‌تیترگردی. رسوب کربنیکی که
پس از سانتی‌تیترگردی حاوی رسوب کمی لیتر
استن سانتی‌تیترگردی داده و سپس مجددا به همان
دور به مدت ۱ دقیقه سانتی‌تیترگردی نموده و
آخرين مرحله چهار مرتیب تکرار شد. سپس
مقدار ۳ میلی لیتر (H3PO4 (w/v)
و یک
میلی لیتر اسید تیتری تری بروتیک (w/v)
افزوده و محلول برای دمای
۱۰۰ °C
سپس واکنش با سرد
کردی کربن دهی گردیده ۱۰ دقیقه در دمای
۵۳ و ۵۴ به وسیله دستگاه استپینگفوتمتر
(Uvikon watford)
در اندیشگه گیری (۱۲، ۱۳).
نسل نشانه‌ای DNA RNA با کاوشگر
FSNF RADDAB ACTIN (انالوژژنترن بلات)
فشر رادیوئتیو (انالوژژنترن بلات)
در ابتدا انتقال به زل اکراز و
الکتروفورز آن انجام شد. پس از حذف
قسمت‌های اضافی زل RNA به غشا
نایلونی با افزودن HybondN+(Amersham)
NAOH ۲/۵ مول در مدت حداقل ۱۰ ساعت
منتقل گردید. به منظور انجام همپریداسیون
1- Northern-blot analysis
جدول 1- میزان پروتئین پروکسیل در مراحل نمو برای تیمارها خشکی (استخراج پروتئین غلاف و دانه از تیمپه‌های تری تریکسی که مربوطه به تریکسی مراحل غلاف دهی و رشدگی انجم دیده).

<table>
<thead>
<tr>
<th>تیمارهای خشکی (بار)</th>
<th>مراحل نمو</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/20</td>
<td>6/5</td>
</tr>
<tr>
<td></td>
<td>3/10</td>
<td>4/3</td>
</tr>
<tr>
<td></td>
<td>1/40</td>
<td>2/10</td>
</tr>
<tr>
<td></td>
<td>1/50</td>
<td>1/10</td>
</tr>
</tbody>
</table>

مقدارهای میانگین تیمارها توسط آزمون داکسک نقدی دیده در کلیه موارد میانگین‌هایی که حداقل دارای یک حرف مشترک هستند، اختلاف آماری دارد (۰/۰۵).

cddedejmlopq aabbcghknml efgfghknopqrs efmnopqrpqrstt ghghihikklopq deefefijklmnop

TBARMTBARMAOS1-
Active Oxygen Species (AOS)

کلروفیل حساسیت پیشتری به شرایط نشین نشان می‌دهد. برخی مقایسه‌های دیگر نیز تغییرات کلروفیل را به عنوان شاخص برای مقایسه به تشخیص معرفی نمودند (4). سنگینسبت که از نظر تکمیل اطلاعات بیوشیمیایی از روند تأثیر سطح تنش خشکی تیمار شدید تیمار در مراحل 1 قابل ملاحظه است. این تیمار در نهایت میزان سلولی و پروتئین پروکسیل در کنار کلروفیل برای تیمارهای مزبور در شکل نشان داده شده است. نتایج نشان داد که روند کاهش پروتئین برای هر سه تیمار شاهد زیادی داشت این مشمله در مورد کلروفیل نیز صادق بود. مقایسه گروه تغییرات پروتئین و کلروفیل طی مراحل رشد برای تیمارهای مور داشته یکی دانش داد می‌تواند نشان دهنده اختلاف بین دو تیمار شود.

1- Active Oxygen Species (AOS)
آکسیدانتیو و در پی آن اختلال در فعل و انفعالات سلولی می‌شوند و دوم اینکه غلفت‌های پایین این رادیکال‌ها به عنوان فاکتورهای سیگنال ال-تی‌بی‌اِرم در فعل نمودن زهای دفاعی ایفای نقش می‌نمایند. چنین نقشی به طور معمول از طریق تأثیر مستقیم یا غیرمستقیم بر پروسه‌های مجزای صورت می‌پذیرد (2). نتایج این تحقیق نشان داد با افزایش تنش خشکی میزان TBARM پلکانی نشان داد (شکل 2).

می‌گردد (8) با مطالعات انجام شده روی گیاه کلزا افزایش میزان فلاتونیدها و نقش آنتی آکسیدان‌ها آنها تحت تأثیر تنش اکسیدانتیو ثابت شده است (12). به لحاظ مولکولی و در سطح سلولی خسارات ناشی از استرس های محیطی به دلیل بروز تنش اکسیدانتیو می‌باشد. تنش های محیطی از مهم‌ترین محدودکننده‌های رشد و تولید گیاهان زراعی می‌باشد. بررسی میزان این رادیکال‌ها از دو جهت حائز اهمیت است اول اینکه این رادیکال‌ها در غلفت‌های بالا منجر به بروز تنش

شکل 1- روند تغییرات میزان پروتئین و کلروفیل در مراحل نمو در شرایط تیماری شاهد، 15-0 و 1- بار (میزان خطا) معیار با علائم میله نشان داده شده است (4٪).

1- Signaling factors
پرسی نقش زن گلوتامیک سینتتاژ طی مراحل رشد کلزا تحت شرایط نش خشکی

البته کاهش مقدار نسبی آن در تشخیص TBARM می‌تواند عکس عمل کامل‌الاً متقاضی را با میزان کلروفیل در سطوح تشخیص کلروفیل در سطوح TBARM. خشکی بیشتر بود (شکل 2).

شکل 2- متوسط مقادیر کلروفیل و شاخص پراکسیداسیون سلولی (TBARM) در شرایط تیمارهای نش خشکی (مقادیر خطای معیار با علائم میله نشان داده شده است). (نقطه 4).

الف) بیانزن

روند تغییرات بیان زن گلوتامیک سینتنتز در شکل 3 نشان داده شده است. نش بیان زن مزبور در برف به گونه‌ای یک بود که با افزایش سن عموماً افزایش نش سرباری به طور قابل توجهی حاصل گردید. بنی به نظر می‌رسد که این زن در روند فاز یاد بیشتر برف نش دارد. برای برف مرحله ای فعال است که به بحث فیزیولوژیک و زنینکی حائز اهمیت می‌باشد. از مشخصه‌های باز بیشتر برف رود انتقال مواد آلی از برف با مسند به اندام‌های جوان و ذخيره ای بوضیز داده است (نقطه 11). بدن منظور شکسته شدن مولکول‌های حیاتی بیزار نظر بروتئین‌ها اهمیت زیادی
حساس سلولی انجام گرفت. هیبریداسیون غشاء با کلون رادیوهاکی گلوتامین سینتیاز انجام و با ظهور کاست رادیوگرافی نتیجه تئوری RNA گردد. در مورد غلاف و دانه استخراج از نمونه های مربوطه صورت پذیرفت.

(تنش) و اکتشف مثبت نشان داده و پس از آن به دلیل عدم وجود پاسخی کافی برای واکنش روند کاهشی فعالیت قابل انتظار خواهد بود. این موضوع در بخش مطالعات دیگر نیز گزارش شده است (10 و 11). انتقال RNA به زل و پس از آن به غشاء RNA

شکل ۳- هیبریداسیون نورتن بلات: استخراج برای هر تیمار صورت گرفت.

این زن در غلاف مطالعه ی روند فراآیند پیروی و تأثیر تنش های شدیدتر محیطی در غلاف در مقایسه با برگ می تواند اطلاعات سنجیده را فراهم آورد. این موضوع توسط چالید و همکاران (32) نیز مورد تأکید قرار گرفته است. تغييرات بین یک گلوتامین سینتیاز در دانه بیشترین تأثیر را تحت تأثیر سطوح تنش خشکی نشان داد و با توجه به فعالیت این زن دانه انجام مطالعات تکمیلی در این ارتباط حائز اهمیت می باشد.

از نتایج قابل توجه در این تحقیق بیان یک گلوتامین در غلاف سبز بود. با توجه به تعداد نسبتا زیاد غلاف در کلزا به نظر می رسد غلاف سهم عمده ی از فتوسنتز، ماده سازی و در ادامه ی انتقال مواد به دانه را دارد. بیان یک گلوتامین زن در غلاف تحت تأثیر تنش خشکی در مقایسه با بیان آن در برگ تغییرات کمتری نشان داد. همچنین بیشترین مقدار بیان زن در تیمار ۴- بر حاصل گردید. در حالیکه در برگ در این تیمار سطح پایینی از بیان زن ملاحظه شد (شکل ۳). با توجه به شباهت نسبی بیان

Evaluation of Glutamine Syntetase Gene Role in Growth Stage of Brassica Napusat and Drought Stress Condition

S. Navabpour1 and R. Haddad2
1- Assistant Professor, Gorgan University of Agricultural Sciences and Natural Resources
2- Assistant Professor, University of IKIU, Qazvin

Abstract
In order to evaluate on Glutamine Syntetase gene expression as well as amount of protein, chlorophyll and oxidative index of TBARM the experiment has been carried out using Brassica napus (Falcon cv.) in research greenhouse condition. The drought stress treatments were included -0.5, -1, -2, -4 and -6 bar that by using of equivalent water (6.5, 6, 4.7, 3, 1.1 litr respectively) have been irrigated, also field capacity (FC) irrigation (6.8 litr) has been used as control. The drought stress treatment has been carried out after plant vernalization and transferred to greenhouse. To increase accuracy, the statistical design of Randomized Complete Block (RBC) has been used with 4 replicates. In order to measure gene activity, chlorophyll, protein and TBARM amount leaf samples have been collected at different growth stages (stem elongation, flowering, pod stage, physiologic maturity) for all treatments. The results showed, the amount of protein and chlorophyll decreased by drought stress intensity as well as plant age. In most growth stages there were not significant different for protein amount at control, -0.5 and -1 bar drought treatments. The amount of TBARM was built up by drought stress increase. The glutamine syntetase transcript intensified by plant age increase. The gene activity was gone up by increase drought stress up to -1 and declined by higher stress. The gene activity in pod and grain was lower than its amount in leaf.

Keywords: Brassica napus, Drought stress, Protein, Chlorophyll, Glutamine syntetase gene